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Abstract Docking represents a versatile and powerful meth-
od to predict the geometry of protein–protein complexes.
However, despite significant methodical advances, the identi-
fication of good docking solutions among a large number of
false solutions still remains a difficult task. We have previously
demonstrated that the formalism of mutual information (MI)
from information theory can be adapted to protein docking, and
we have now extended this approach to enhance its robustness
and applicability. A large dataset consisting of 22,934 docking
decoys derived from 203 different protein–protein complexes
was used for an MI-based optimization of reduced amino acid
alphabets representing the protein–protein interfaces. This
optimization relied on a clustering analysis that allows one
to estimate the mutual information of whole amino acid alpha-
bets by considering all structural features simultaneously, rather
than by treating them individually. This clustering approach is
fast and can be applied in a similar fashion to the generation
of reduced alphabets for other biological problems like fold
recognition, sequence data mining, or secondary structure pre-
diction. The reduced alphabets derived from the present work
were converted into a scoring function for the evaluation of
docking solutions, which is available for public use via the web
service score-MI: http://score-MI.biochem.uni-erlangen.de

Keywords Protein interaction . Structure analysis . Reduced
amino acid alphabet . Protein interface . Mutual information

Introduction

Protein–protein interactions play a central role in various
aspects of the structural and functional organization of the
cell. Their elucidation is crucial to understanding processes
such as metabolic control, signal transduction, and gene
regulation [1–6]. Large-scale studies using yeast two-
hybrid assays or mass spectrometry provide an increasing
list of protein–protein interactions [7–11]. However, experi-
mental structural determination of all of them is impractical,
and only a small fraction of the potential complexes will be
amenable to direct experimental analysis. In this context,
docking simulations help to predict in silico the structures
of protein complexes [12, 13]. Protein docking simulations
generate a large number of putative complex structures. The
identification of correct solutions from this vast array of
incorrect structures, however, remains a difficult task, and
to date no general solution to this problem is available.

In a previous study [14], we used the concept of mutual
information (MI) to identify those structural features that are
particularly informative to distinguish between good and bad
docking solutions. In particular, we focused on the different
types of amino acid contacts present in the interfaces. In order
to simplify the different types of contacts, and to increase the
interpretability of the results, a reduced amino acid alphabet
was generated, in which the 20 amino acids were grouped into
four classes according to their biophysical properties. This
strategy results in a total of ten different types of contacts in
protein interfaces, for which the MI can be calculated. We also
derived a strategy to convert the respective MI values into a
scoring function for the identification of good docking solu-
tions. This previous work demonstrated the general applica-
bility of the approach, but was done for only a relatively small
dataset and also lacked a systematic optimization of the re-
duced alphabets applied.

In the present work, we have improved the amino acid
grouping of reduced alphabets by an iterative approach that
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uses clustering analysis and the MI as an objective function.
In addition, a significantly larger dataset was generated as a
basis for the clustering procedure. This new strategy allows
more reliable identification of good docking solutions and is
now available for public use via the web service score-MI:
http://score-MI.biochem.uni-erlangen.de

Methods

Dataset of docked complexes

The dataset is based on 261 protein–protein complexes pro-
vided by Vakser et al. as unbound docking benchmarks 1.0
and 3.0 (http://dockground.bioinformatics.ku.edu/). For the
generation of the docking decoys, we used the FTDock
docking algorithm (version2.0) [15] as implemented in the
3D-Dock Suite. To generate a realistic docking scenario, the
experimental structures of the two isolated (unbound) sub-
units were used whenever available (127 of the 261 docking
cases). For the remaining 134 cases, docking started from the
unbound conformation of one of the interaction partners and
used the bound conformation for the second one.

For each of these 261 complexes 10,000 docking solutions
were generated. To remain consistent with the selection proce-
dure in our previous work [14], which was based on the
Dockground 1.0 dataset [16–18], these solutions were classified
as near-physiological (‘close’) or non-physiological (‘false’)
according to the following criteria: close docking solutions
are characterized by a ligand RMSD of less than 5 Å (for
backbone Cα-atoms) to the correct complex geometry. The
203 complexes for which at least one close docking solution
was generated by FTDock were included in subsequent analy-
sis. For each of these 203 complexes, up to 20 close as well as
the 100 top-scoring false docking solutions were included. The
resulting dataset had 22,934 docking decoys, of which 2,634
were close and 20,300 were false docking solutions.

This dataset provided the basis for the generation of a
residue-based interaction map of the interfaces. According to
the concept of a residue-based potential [19], only one con-
tact was counted per pair of interface residues. The distance
of such a residue–residue contact was defined as the closest
atomic distance between the amino acids involved. Interface
residues are defined as having at least one atom in less than
7 Å distance from the docking partner [14]. This resulted in
more than 3.4·106 interface contacts in the present dataset.

Calculation of the mutual information

Mutual information (MI) in information theory is a measure
of the coupling between two random variables X and Y
telling us what we can learn about X when we observe Y
(and vice versa) [20]. The mutual information I(X; Y)

depends only on the probability distributions Pr(X) and
Pr(Y) as well as their joint probability function Pr(XY), with
Mx and My denoting the alphabet sizes of X and Y:

I X ; Yð Þ ¼
X

i¼1

Mx X

k¼1

My

Pr X ¼ xi; Y ¼ ykð Þlog2
Pr X ¼ xi; Y ¼ ykð Þ

Pr X ¼ xið ÞPr Y ¼ ykð Þ
� �

ð1Þ
In the application of this concept to docking analysis, the

binary random variable X expresses whether a docking solu-
tion is close or false, X ∈{c,f}. The random variable Y can,
for example, specify the number of contacts of a certain type
in the interfaces of the close and false docking solutions. For
this type of application, the information content of different
structural features is usually assessed separately [14]. In the
present work, the MI-formalism was extended to address a
second question related to docking: The comparison of the
performance of various reduced alphabets. Such alphabets
group similar amino acids together in one class, thus increas-
ing the statistical robustness of the predictions [21].

Clustering protocol

To assess the performance of different reduced alphabets,
calculation of the overall information content of all descriptors
is required, which was done by cluster analysis here. Cluster
analysis is a means to group objects in such a way that the
objects in one cluster are more similar to each other than to
those in other clusters [22, 23]. This approach allows one to
estimate the MI of a whole alphabet by assessing all underly-
ing structural features simultaneously. Cluster analyses were
done using the ELKI framework [24]—a knowledge discov-
ery in databases (KDD, “data mining”) software framework.
For our purpose, we used the wide-spread k-means clustering.
Given a set of n observations (x1, x2, …, xn), k-means clus-
tering aims to partition the n observations into k clusters (k≤n)
S={S1, S2, …, Sk} so as to minimize the total distance of the
objects from their respective cluster center:

argmin
S

X

i¼1

k X

x j∈Si

x j−μi

�� ��2; where μi is the mean of points in Si:

ð2Þ
For k-means clustering, we used Lloyd’s algorithm [25],

also known as Voronoi iteration, modified with k-means++
initialization [26]. Implicit weighting of the descriptors was
prevented by in-descriptor normalization prior to clustering.

The MI of an alphabet in each clustering repeat was
evaluated by assessing the MI of all k clusters simultaneously.
In this clustering analysis, Y in Eq. 1 refers to the k
clusters, and all structural descriptors are treated for all
docking solutions simultaneously in one single clustering.
In the present work, the structural descriptors evaluated are the
number and type of pairwise amino acid contacts in the
protein interfaces.
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For clustering, a maximum of 250 iterations was allowed
and the number of clusters was set to 20. The clustering was
repeated 20 times to achieve statistical soundness. This number
of repeats was high enough in pre-tests to keep the standard

deviation below 15%of the averageMI value (data not shown).
The maximum achievable MI (MImax) depends on the

frequencies of close and false solutions, which makes com-
parison between different datasets difficult. To obtain a nor-
malization of the values, all MI values reported in this paper
are given as percentage of MImax, which is 0.51 in the present
dataset. The corresponding measure was termed MInorm.

Performance of the reduced amino acid alphabets

From each reduced amino acid alphabet resulting from the
clustering procedure, a scoring function was derived using a

previously established formalism [14] and tested in a five-
fold cross-validation for its ability to discriminate close from
false docking solutions. For cross-validation, the present
dataset of 203 complexes was divided into five sets of almost
equal sizes: three sets of 41 complexes and two sets of 40
complexes, with all the respective close and false decoys.
Four of the five sets were combined into the training set and
the performance was tested on the remaining set. This pro-
cedure was repeated five times, each time treating another of
the five sets as the test set.

The performance of the scoring function was assessed by
counting the close docking solutions among the three, five,
or ten top-scoring solutions. To obtain a more realistic esti-
mation of performance, their number was corrected by the
number of close solutions that are expected to be found by
chance on the same top x ranks using the following equation:

enrichment in the top x positions ¼ close solutions present in the top x positions

close solutions expected by chance in the top x positions
ð3Þ

Fig. 1 Distribution of close and false docking solutions in different
datasets. a Root mean square deviation (RMSD) distribution in the old
dataset (left) used in [14] and in the new dataset (right). The RMSD
values denote the deviation from the native complex structure. In both
datasets a threshold of 5 Å was used to distinguish between close and
false docking solutions. b Spatial distribution of the close and false
solutions of the soybean trypsin inhibitor docked to the porcine pancreatic

trypsin subunit (PPT/STI complex, PDB: 1avw) in the old (left) and new
(right) dataset. The native structure is shown in ribbons with the
interacting residues Tyr151 of PPT and Arg65 of STI in sticks, and their
Cα atoms in balls. The additional balls indicate the position of the Cα
atom of Arg65 for the native (deep blue), close (green) and false (grey)
STI docking solutions
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Table 1 Results of the iterative alphabet optimization procedure. Results
are shown for three iteration runs starting either from the parent alphabets
PO or PL. For each step of iteration the respective intermediate alphabet ‘I’
as well as the final child alphabet ‘C’ is given. The type of action performed

on the alphabet is listed and the affected character or class is highlighted in
bold. For reasons of clarity, only those operations that led to the maximal
increase of the MI

�
norm in the respective iteration step are shown

Alphabet Operation
MInorm MI

�
norm

PO ACFGILMPV~DE~HKR~NQSTWY - 5.11 (±0.25) 4.86

I1O ACFGILMPV~DE~HKR~NQSTW~Y isolate Y 7.04 (±0.28) 6.76

I2O ACFGILPV~DE~HKR~MY~NQSTW move M 8.19 (±0.21) 7.98

I3O ACFGILPV~DE~HKR~MWY~NQST move W 8.71 (±0.28) 8.43

I4O ACFGILV~DE~HKPR~MWY~NQST move P 9.34 (±0.29) 9.05

I5O CFGILV~DE~HKPR~MWY~ANQST move A 9.87 (±0.39) 9.48

I6O CFGIL~DE~HKPRV~MWY~ANQST move V 10.26 (±0.24) 10.02

I7O CFGIL~DEK~HPRV~MWY~ANQST move K 10.55 (±0.28) 10.27

CO CFGIL~DEK~HPQRV~MWY~ANST move Q 10.72 (±0.20) 10.52

PL APST~CILMV~DENQ~FWY~G~HKR - 7.93 (±0.22) 7.71

I1L APST~CGILMV~DENQ~FWY~HKR merge cl.2+5 9.06 (±0.23) 8.83

I2L APST~CGILV~DENQ~FMWY~HKR move M 9.76 (±0.24) 9.52

I3L APST~CGIL~DENQ~FMWY~HKRV move V 10.48 (±0.19) 10.29

I4L APST~CGHIL~DENQ~FMWY~KRV move H 10.97 (±0.27) 10.70

CL AKPRSTV~CGHIL~DENQ~FMWY merge cl.1+5 11.02 (±0.26) 10.76

PL APST~CILMV~DENQ~FWY~G~HKR - 7.93 (±0.22) 7.71

I1L* APST~CILMV~DENQ~FWY~HKR discard G 8.76 (±0.35) 8.41

I2L* APST~CILMV~DENQ~FWY~KR discard H 9.28 (±0.32) 8.96

I3L* APST~CGILMV~DENQ~FWY~KR insert G 9.55 (±0.35) 9.20

I4L* APST~CGILM∼DENQ~FWY~KR discard V 9.69 (±0.29) 9.40

I5L* APSTV~CGILM~DENQ~FWY~KR insert V 10.10 (±0.38) 9.72

CL* APSTV~CGHILM~DENQ~FWY~KR insert H 10.18 (±0.41) 9.77

Fig. 2a,b Procedure for the calculation ofMInorm and the optimization of
amino acid alphabets. a Schematic presentation of the MInorm calculation
strategy. (b) Depiction of the iterative alphabet optimization procedure.
Additional steps of the iterative procedure include the generation of a large
number of novel candidate alphabets by different operations (merging,

discarding, extracting,…). The intermediate alphabet with the highest
information content was subjected to further rounds of optimization, until
no further optimization was possible and the final intermediate was termed
child alphabet (see text for details)
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To validate the performance of the approach, results were
compared to those from ZRANK [27] and dDFIRE [28],
which represents the latest improved version of DFIRE [29].
ZRANK uses a combination of different energetic terms for
scoring (van der Waals, electrostatic, and desolvation ener-
gies), whereas DFIRE uses an all-atom knowledge-based po-
tential. Since ZRANK requires polar hydrogens for execution,
these atoms were added to the PDB files with HBPLUS [30].
Enrichment values were calculated according to Eq. 3 above.

Web interface

To allow easy public access to the MI-based scoring function,
we implemented the web server score-MI: http://score-
MI.biochem.uni-erlangen.de. The server and the front end
were designed using Perl, PHP, and HTML. As a minimum
input for scoring, the user has to provide a file containing
several docking solutions with valid chain identifiers. Scoring
of an average complex (1,000 amino acids) takes approxi-
mately 1 h for 100 docking poses. In addition to the tabular
presentation of the individual MI terms, a Jmol applet [31]
was implemented for visual inspection of the docking solu-
tions. A menu allows to select each solution individually for
display with the interface residues of both partners highlighted
in different colors. Finally, a file can be downloaded by the
user that contains the docked complexes ordered by their rank.

Results and discussion

Dataset of docking solutions

Investigation of the structural features of protein interfaces
requires a sufficiently large dataset to draw statistically valid
conclusions. In our previous work [14], we used the pre-
compiled Dockground 1.0 dataset, which contains 505 close
and 6,100 false docking solutions for 61 different protein–
protein complexes [16–18]. The new dataset, which was
generated with FTDock, is more than three times larger and

contains 2,634 close and 20,300 false docking solutions for a
total of 203 different protein–protein complexes.

The two datasets, however, differ not only in the number but
also in the distribution of the docking solutions (Fig. 1). As can
be seen from Fig. 1a, the new dataset contains a much higher
portion of false docking solutions with RMSDs between 5 and
10 Å, for which discrimination from the close solutions
(RMSD<5 Å) should be particularly difficult. In addition,
the RMSD values indicate that close and false docking solu-
tions are now distributedmore evenly in docking space. This is
exemplified in Fig. 1b for the complex between the porcine
pancreatic trypsin and its inhibitor (PPT/STI complex, PDB
entry: 1avw). In the new dataset (right panel) the docking poses
are distributed homogeneously around the native structure,
whereas the old dataset (left panel) exhibits several distinct
clusters that contain the majority of the docking solutions.
Thus, the new dataset is not only more than three times larger,
but also exhibits a more realistic distribution of close and false
docking solutions, and should therefore provide a suitable
basis for further method development.

Evaluation and optimization of reduced amino acid
alphabets

In our previous work, we have defined a 4-class reduced
alphabet to calculate the MI of different types of interface
contacts [14]. Due to interactions and redundancies in the
dataset, however, the MI-values of different types of contacts
are not strictly additive and therefore do not allow any
conclusions to be drawn about the overall MI of the alphabet.
Thus, other reduced alphabets that exhibit a higher MI might
exist and might therefore be more suitable for the identifica-
tion of good docking solutions. Therefore, we developed a
formalism that allows us to calculate the MI of an entire
alphabet from a clustering analysis (Eqs. 1, 2). This cluster-
ing analysis is fast and can therefore also be applied to
iterative alphabet optimization using the MI as an objective
function. As starting points for this procedure, we used the 4-
class alphabet ACFGILMPV-DE-HKR-NQSTWY from

Table 2 Performance of different
reduced alphabets in cross-vali-
dation. The enrichment (En) of
close solutions on the top ranks
was calculated for the parent (PO
and PL) and child (CL, CL*, and
CO) alphabets. The performance
of a full 20-class alphabet and of
the two common scoring tools
ZRANK and dDFIRE are given
for comparison

Alphabet En (top 3) En (top 5) En (top 10)

PO ACFGILMPV-DE-HKR-NQSTWY 1.69 1.78 1.69

PL APST-CILMV-DENQ-FWY-G-HKR 2.53 2.34 2.27

CL AKPRSTV-CGHIL-DENQ-FMWY 2.69 2.68 2.51

CL* APSTV-CGHILM-DENQ-FWY-KR 2.86 2.57 2.48

CO ANST-CFGIL-DEK-HPQRV-MWY 2.64 2.55 2.56

Each amino acid as individual class 2.68 2.82 2.74

ZRANK 2.79 2.67 2.31

dDFIRE 2.67 2.62 2.43
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Othersen et al. [14] and a 6-class alphabet APST-CILMV-
DENQ-FWY-G-HKR resulting from a previous optimization
procedure reported in Launay et al. [32]. These two ‘parent’
alphabets are henceforth termed PO and PL, respectively.

The MI of these alphabets was optimized using the strategy
outlined in Fig. 2. Starting from the parent alphabets in the first
round of iteration, the following operations were applied to
generate a large number of novel candidate alphabets: merging
two classes, discarding an amino acid or class, moving an
amino acid to a different class, extracting and reintroducing
an amino acid as an additional class, assigning previously

discarded amino acids to an existing class, or introducing
them in the alphabet as a new class. These operations
resulted in approximately 120 novel candidate alphabets

per iteration for which the MInorm was subsequently calcu-
lated using the clustering procedure described in methods.

A comparison of the candidate alphabets from each round

of iteration was based on the MI
�
norm value, which was

calculated from MInorm by subtracting the standard deviation

to obtain a lower bound forMInorm. The intermediate alphabet

with highest MI
�
norm value was subjected to further rounds of

optimization if the respective MI
�
norm value was higher than

the MI
�
norm of its precursor alphabet. The procedure was

repeated until no further increase of theMI
�
norm was achieved

and the final intermediate was termed child alphabet.
The results of this optimization procedure are shown in

Table 1. The first block shows the iterative optimization for
the 4-class PO parent alphabet. For this alphabet, the first step
of the iteration procedure (I1O) was the isolation of tyrosine

as a fifth class, which increased theMInorm from 5.11 to 7.04.
In the subsequent iteration steps the amino acids M, W, P, A,
V, K, and Q were moved to different classes resulting in a

Table 3 Scoring of docking solutions with different alphabets. Results
are compared for the application of the 4-class alphabet PO (top half) and
the five-class alphabet CL* (lower half) to the elastase-inhibitor complex
(PDB code 1PPF). In the table, classes are numbered consecutively, and

pairs of numbers indicate contacts between the respective amino acid
classes, e.g., “1:2” for PO indicates contacts betweenHKR andDE. Ranks
marked by a prime indicate close docking solutions. The final column
lists the ligand RMSD compared to the correct docking solution

PO Amino Acid Class Legend
1:  HKR   2: DE    3: NQSTWY    4: ACFGILMPV 

MI Contributions of Amino Acid Class Contacts
Rank Model ID MI score 1:1 1:2 1:3 1:4 2:2 2:3 2:4 3:3 3:4 4:4 RMSD

1 42 30.867 6.178 1.489 1.706 2.984 5.583 4.896 6.85 0.014 0.03 1.137 10.68
2 36 30.867 6.178 1.489 1.706 2.984 5.583 4.896 6.85 0.014 0.03 1.137 28.04
3 86 30.867 6.178 1.489 1.706 2.984 5.583 4.896 6.85 0.014 0.03 1.137 33.82
4 66 30.842 6.178 1.489 1.706 2.984 5.583 4.896 6.85 -0.011 0.03 1.137 10.74
5 43 30.842 6.178 1.489 1.706 2.984 5.583 4.896 6.85 -0.011 0.03 1.137 48.17
6 45 30.829 6.178 1.489 1.706 2.984 5.583 4.896 6.85 0.014 -0.008 1.137 19.25
7 62 30.064 6.178 1.489 1.706 2.984 5.583 4.896 6.85 0.014 0.03 0.334 22.58
8 26 30.064 6.178 1.489 1.706 2.984 5.583 4.896 6.85 0.014 0.03 0.334 18.13
9 28 30.039 6.178 1.489 1.706 2.984 5.583 4.896 6.85 -0.011 0.03 0.334 18.73
10 39 30.039 6.178 1.489 1.706 2.984 5.583 4.896 6.85 -0.011 0.03 0.334 10.37

CL* Amino Acid Class Legend
1: APSTV    2: CGHILM    3: DENQ    4: FWY    5: KR

MI Contributions of Amino Acid Class Contacts
Rank Model ID MI score 1:1 1:2 1:3 1:4 1:5 2:2 2:3 2:4 2:5 3:3 3:4 3:5 4:4 4:5 5:5 RMSD

1’ 1330 58.653 1.186 0.019 13.33 1.025 0.378 2.271 2.829 12.018 -0.405 9.038 -0.088 5.609 3.656 0.299 7.488 3.55
2’ 1039 55.518 1.186 -0.288 13.33 1.025 0.378 2.271 -0.091 12.018 -0.405 9.038 0.004 5.609 3.656 0.299 7.488 1.40
3’ 1433 51.533 -0.554 -0.288 13.33 -1.49 7.944 -1.275 -0.091 12.018 -0.405 9.038 -0.088 5.609 0.811 -0.514 7.488 3.83
4’ 48 51.260 1.186 -0.288 13.33 -1.49 7.944 2.271 2.829 3.539 -0.405 9.038 -0.088 5.609 0.811 -0.514 7.488 3.49
5’ 149 50.536 1.186 0.019 13.33 1.025 7.944 -1.275 2.829 3.539 -0.405 9.038 -0.088 5.609 0.811 -0.514 7.488 4.02
6’ 1438 48.934 1.186 0.019 13.33 -1.49 0.378 -1.275 2.829 12.018 -0.405 9.038 -0.088 5.609 0.811 -0.514 7.488 3.16
7’ 1659 48.647 1.186 0.019 13.33 -1.49 7.944 2.271 -0.091 3.539 -0.405 9.038 -0.088 5.609 0.811 -0.514 7.488 2.98
8 78 47.616 1.186 0.019 13.33 1.025 7.944 -1.275 -0.091 3.539 -0.405 9.038 -0.088 5.609 0.811 -0.514 7.488 8.79
9 35 46.857 1.186 0.019 13.33 1.349 0.378 2.271 -0.091 3.539 -0.405 9.038 0.004 5.609 3.656 -0.514 7.488 5.33

10’ 107 46.340 1.186 -0.288 13.33 1.025 0.378 2.271 -0.091 12.018 -0.405 9.038 0.004 -0.724 0.811 0.299 7.488 3.39

Fig. 3a,b Distribution of the ten top-scoring docking solutions. Results
are compared for the application of a the PO and b the optimized CL*
alphabets to the elastase-inhibitor complex (PDB code 1PPF). Brown
ribbon Elastase, balls center of mass of inhibitor for each docking
solution. Blue Native solution, green close solution, grey false solu-
tions. See Table 3 for a detailed list of the underlying mutual informa-
tion (MI) scores

Fig. 4a,b Screenshots of the score-MI web service. a Job submission
interface and b exemplified result page. Results include a detailed
tabular presentation of the individual MI terms for the top ranked
solutions and a Jmol applet for visualization of the identified interfaces
are provided. The user can download the ranked docking solutions and
a tabular version of the corresponding MI scores

�
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finalMInorm of 10.72. For the respective child alphabet CO no
further optimization was possible.

Starting from the 6-class, the PL alphabet led to a reduction of
the classes in the first step of the iteration. In this step, glycine,
which was originally considered as a separate class, was merged
into the CILMV class. In subsequent steps, the amino acids M,
V, and H were moved to different classes. In the final step, two
classes were merged resulting in a 4-class alphabet.

Comparison of the MInorm of CO and CL shows that both
alphabets exhibit a similar information content. The increase

of the MInorm, however, was considerably lower for the PL →
CL optimization procedure, which can be explained readily by
the fact that PL itself represented an optimized alphabet
obtained by a different strategy [32]. One rather unexpected
observation was the merging of two classes of amino acids in
the final step of PL optimization (I4L → CL) (Table 1). To
investigate whether the results can be improved if merging is
made more difficult, the calculation procedure was modified
in the following way: merging itself was no longer directly
possible in the modified protocol. Instead, merging was pos-
sible only as a result of two iterative steps, in which an amino
acid is first discarded from the alphabet and in a second step
again inserted into the alphabet, but into a different class.

Application of the respective protocol to PL resulted in the
removal of G, and H in the first two steps, resulting in a 5-class
alphabet comprising 18 amino acids (I2L*). These amino
acids are assigned to different classes in subsequent steps of
the iteration procedure (I2L* → I3L* and I5L* → CL*, re-
spectively). The same discarding and re-inserting is also ob-
served for valine resulting in a total of three amino acids,
which have been moved to different classes. Using this setup,

optimization results in a 5-class alphabet. TheMInorm is lower
compared to the 4-class CL, which might be explained by the
lower number of operation allowed for CL* calculation.

All child alphabets exhibit a quite similar number of four to
five classes, although this number was not restrained during
the iteration procedure, and theoretically between 1 and 20
classes would have been allowed. The observation that the
resulting child alphabets differ with respect to the classifica-
tion of several amino acids most probably reflects the fact that
our search procedure is not exhaustive and becomes trapped in
local optima. Despite this limitation, all iteration runs have

resulted in child alphabets with a significantly higher MInorm
compared to their parent alphabets, demonstrating that the
clustering procedure in conjunction with the optimization
protocol results in an increased information content.

Performance of the alphabets in docking predictions

The MI-values listed in Table 1 suggest that the child alpha-
bets should perform better than their parent alphabets in
discriminating between good and bad docking solutions.

To address this point in a quantitative fashion, the MI values
were converted into a scoring function using a previously
established protocol [14]. To avoid biasing of the results, the
generation of the scoring function and scoring itself were
performed in a five-fold cross-validated fashion.

The performance of the scoring function was assessed by
counting the close docking solutions among the three, five,
or ten top-scoring solutions. To obtain a more realistic esti-
mation of the performance, their number was corrected by
the number of close solutions that are expected to be found
by chance on the same top ranks (see Methods). The
resulting enrichment values are given in Table 2.

Application of the PO alphabet results in a ∼1.75 fold
enrichment of close docking solutions on the first ranks, while
the PL alphabet performs significantly better as evidenced by
the 2.3 to 2.5 fold enrichment. This better performance of PL is

in line with its higherMInorm compared to PO (Table 1) and can
be explained by the fact that PL itself has resulted from a
previous alphabet optimization procedure [32]. Table 2 shows

that the higher MInorm of the child compared to their parent
alphabets is also reflected in the performance in scoring: all
three child alphabets exhibit an enrichment of 2.5- to 2.8-fold
and thus perform even better than PL. There is no significant
difference between the performance of the child alphabets:
CL* performs better for the top three ranks, whereas CO gives
slightly better results for the top ten.

Most interestingly, the performance of the child alphabets
is almost equivalent to a scoring function in which each
amino acid is treated as separate class (Table 2). For the top
three positions, one of the reduced alphabets (CL*) performs
even better than the full alphabet. This finding suggests that
optimized reduced alphabets are capable of capturing the
properties of protein–protein interfaces, with a similar accu-
racy than the more complex 20-class alphabet. This finding
is in line with previous studies demonstrating that optimized
reduced alphabets perform similar as full alphabets [21, 32,
33] or can even outperform full alphabets for particular
biological problems like protein fold assignment [34].

The improved performance of the optimized alphabets
becomes particularly evident for those docking cases for
which the PO alphabet failed to place any close docking
solutions on the top ranks. One example for this situation is
the complex between the human leukocyte elastase (PMN
elastase) protein and the third domain of the turkey
ovomucoid inhibitor (Fig. 3a). In contrast, the optimized
CL* alphabet places eight close docking solutions among the
top 10 solutions (Fig. 3b). The contribution of the different
types of contacts to the overall score can be seen in Table 3.
All ten top-scoring solutions selected based on the PO alphabet
exhibit RMSD values of >10 Å compared to the correct
solution. In contrast, all ten top-scoring solutions from CL*
exhibit RMSD values of <10 Å, and the three top-scoring
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solutions even exhibit RMSDs of <4 Å compared to the correct
solution. The MI-based scoring approach is also accessible via
the web interface score-MI: http://score-MI.biochem.uni-
erlangen.de and the key features of the service are shown in
Fig. 4.

The performance of the present approach was also com-
pared to that of the two popular scoring functions ZRANK
[27] and dDFIRE [28, 29]. According to the results shown in
Table 2, these two scoring functions perform quite similarly
on the present dataset. The child alphabets from the present
work perform similarly to the two established scoring func-
tions for the top three ranks, and even slightly better for the top
ten ranks. The overall similar performance is interesting in the
light of the fact that the three methods treat the features of
amino acids in different ways: either as physical energy terms
(ZRANK), as atom-based potential (dDFIRE), or as residue-
based potential (present work). Thus, one might speculate that
the measured performance is close to the upper limit that can
be achieved by an isolated consideration of amino acid prop-
erties and that consideration of additional and more sophisti-
cated structural features will be required to further enhance the
performance of scoring functions in future.

Conclusions

We have developed a strategy to optimize the amino acid
grouping in reduced amino acid alphabets thereby enhancing
their ability to identify good docking solutions. The method
relies on a clustering approach using MI as the objective
function. Application of the clustering approach does not re-
quire generation of a scoring function for each designed alpha-
bet during the iteration process, because the work above dem-
onstrates that there is at least a qualitative correlation between
the MI of an alphabet and its performance in scoring. This
allows one to use the fast clustering procedure during alphabet
optimization and conversion into a scoring function is required
only for the resulting child alphabets. Application of this ap-
proach allowed us to iteratively increase the MI of reduced
alphabets and the performance of the optimized alphabets was
demonstrated in a cross-validated scoring approach to be sim-
ilar to that of the ZRANK and DFIRE scoring schemes.
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